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a b s t r a c t

This paper investigates vibration characteristics of footbridge induced by crowd random

walking, and presents the application of multiple tuned mass dampers (MTMD) in

suppressing crowd-induced vibration. A single foot force model for the vertical

component of walking-induced force is developed, avoiding the phase angle

the crowd–footbridge random vibration model, in which pedestrians are modeled as a

crowd flow characterized with the average time headway, is developed to consider the

worst vibration state of footbridge. In this random vibration model, an analytic

formulation is developed to calculate the acceleration power spectral density in

arbitrary position of footbridge with arbitrary span layout. Resonant effect is observed

as the footbridge natural frequencies fall within the frequency bandwidth of crowd

excitation. To suppress the excessive acceleration for human normal walking comfort, a

MTMD system is used to improve the footbridge dynamic characteristics. According to

the random vibration model, an optimization procedure, based on the minimization of

maximum root-mean-square (rms) acceleration of footbridge, is introduced to

determine the optimal design parameters of MTMD system. Numerical analysis shows

that the proposed MTMD designed by random optimization procedure, is more effective

than traditional MTMD design methodology in reducing dynamic response during

crowd–footbridge resonance, and that the proper frequency spacing enlargement will

effectively reduce the off-tuning effect of MTMD.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

With the rapid development of high-performance materials and the flourish of bridge construction in China, there has
been a trend towards long-span footbridge characterized with light weight, slenderness and low natural frequency. When
external loads due to crowd walking act on the footbridge, it may suffer from excessive vibration that inhibits the normal
walking and causes pedestrian discomfort.

The excessive footbridge vibration due to the pedestrian passage is a major consideration in the footbridge design. To
understand the complicated mechanical mechanism of pedestrian-footbridge resonance and develop rational and
reasonable design procedures, a number of numerical and experimental investigations have been performed over the past
decades. In those studies, one of the main subjects was mathematical modeling of human-induced dynamic forces. Gene-
rally, the dynamic force induced by a pedestrian is represented by Fourier series with constant period [1]. Many scholars
ll rights reserved.
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Nomenclature

arms rms acceleration of footbridge
An Fourier coefficient in the single foot force

formulation
ci dynamic load factor of the ith harmonic
ctl the damping coefficient of the lth TMD
fs stride rate of pedestrian
fsi the stride rate of the ith pedestrian
F(x,t) the crowd loading function
Fc(t) the continuous walking force
Fe(t) the single foot force
Fei(t) the single foot force of the ith pedestrian
Fn(t) the nth modal load function of footbridge

generated by crowd crossing
Fn,MTMD(t) the nth modal load function of footbridge

generated by MTMD
Fs(t) the loading time history in the foot standing

point
G body weight of pedestrian
ktl the stiffness of the lth TMD
K the total number of foot standing points on the

footbridge
L the span of footbridge
mtl the mass of the lth TMD
Mn the nth modal mass of footbridge
N total number of pedestrians from the left end
N0 total number of pedestrians from the right end
p the total number of TMD
qn(t) the nth modal displacement of footbridge
SFn
ðoÞ the power spectral density of the nth modal

force
SFs
ðoÞ the power spectral density of the loading time

history in the first foot standing point

Sqn ðoÞ the power spectral density of the nth flexural
modal displacement

S €qn
ðoÞ the power spectral density of the nth flexural

modal acceleration
S €u ðx,oÞ the acceleration power spectral density of

footbridge at section x

ti the time when the ith pedestrian walks onto
the footbridge

T the average time interval of crowd flow
Te constant cycle of single foot force
Ts the cycle of the continuous walking force
u(x, t) the vertical displacement of footbridge
U(t) the unit step function
vtl the stroke of the lth TMD
xt the installation position of MTMD on the

footbridge
ztl(t) the vertical displacement of the lth TMD

btl the modal frequency ratio of the lth TMD
d(x) the Dirac delta function
Dl the stride length of pedestrian
DT the lag time of the crowd flow from the right

after that from the left
xn the nth modal damping ratio of footbridge
xtl the damping ratio of the lth TMD
u walking speed of crowd flow
ui walking speed of the ith pedestrian
fn(x) the nth modal coordinate at section x

ji phase angle of the ith harmonic
on the nth modal circular frequency of footbridge
otl the circular frequency of the lth TMD
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put forward various formulations of dynamic load factor (DLF) and phase angle of each harmonic, from which the walking
force are determined [1–6]. Subsequently, the probabilistic force model [7,8] and frequency-domain force model [9,10] are
developed as two typical models to evaluate the random characteristics of the walking force.

Though most of previous researches recognized the dynamic behaviors of footbridge, the crowd excitation
corresponding to the serviceability state, was not well addressed. Investigations of footbridge vibration under crowd-
induced moving loads are relatively few [8,10–14], especially the random vibration of footbridge considering the
pedestrians’ random passing sequence and variability of stride rates. Matsumoto [11] examines the characteristics of
dynamic fluctuation of pedestrian’s load, and developed the statistical relationship between the collective effect of crowd
and the individual effect of pedestrian on the vibration response of footbridge. Fujino et al. [14] observed the human-
induced large-amplitude lateral vibration of an actual bridge in the congested condition, and studied the influence of
pedestrians’ lateral resonant forces resulting from walking synchronization to the lateral vibration. Brownjohn et al. [10]
presented an auto-spectral density function to describe the realistically imperfect walking force, and adopted the
stochastic vibration approach to calculate the footbridge vibration under crowd loading in the frequency domain. Venuti
et al. [13] modeled the dynamics of the crowd as a compressive flow, and proposed a mathematical model to calculate the
vibration of footbridge under crowd-induced excitation. These researches qualitatively depicted the effect of crowd
excitations on the vibration of footbridge and explored the possibility of solving the crowd–footbridge vibration from the
random vibration approach; however, a general crowd–footbridge random vibration model has not been put forward.

When pedestrians cross footbridge with uniform stride rate and in a congested state, the excessive vibration is likely to
appear and exceeds the walking comfort requirement of pedestrians. Thus, it is essential to find an appropriate and
applicable approach to reduce such vibration. As a relatively economical and convenient vibration control system, the
passive multiple tuned mass dampers (MTMD) can effectively reduce the response contribution of the controlled structure
mode without much interference to the dynamic characteristics of original structure when properly tuned. Xu and Igusa
[15] commended the application of MTMD system to suppressing the excessive vibration of single-degree-of-freedom
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Fig. 1. Illustrations of footbridge vibration comfort requirement employed by various codes.
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system under wide-band random excitation. Yamaguchi and Harnpornchai [16] discussed the fundamental characteristics
of MTMD to suppress harmonically forced oscillations, including the frequency range, TMD damping ratio, and total
number of TMDs, and further advised some design considerations of MTMD system. Subsequent studies on the vibration
suppression effectiveness of MTMD are performed in wind-induced vibration of bridge structures [17], and coupled train-
bridge or vehicle-bridge vibration [18,19], and it is observed that the MTMD system suppresses excessive vibration more
effectively and provides better robustness than a single TMD. Several researchers have investigated its practical
applications in suppressing footbridge vibration due to pedestrian passing and emphasized on the robustness of its control
performance due to the off-tuning effect. Bachmann and Weber [20] proposed the optimal procedure to determine the
design parameters of TMD for lightly damped structures, and demonstrated that the effectiveness of TMD was much more
sensitive to the error in the tuning of the TMD frequency than that in the tuning of its damping. Poovarodom et al. [21–23]
presented the application of MTMD system to suppress man-induced vibrations of a footbridge, and examined the
sensitivity of the control effectiveness of MTMD system against estimation errors in the footbridge’s natural frequency and
magnitude of pedestrian load. However, only the footbridge vibration generated by a single pedestrian passing was shown
to illustrate MTMD control effectiveness. It is interesting to explore its performance under crowd passing with uniform and
random stride rates, and this is one of the main objectives of this study.

In this study, the single foot force formulation which can account for the different stride rates is firstly proposed. With this
formulation, the complex crowd–footbridge resonant vibration mechanism is revealed from the random vibration approach and a
highly efficient computing model in the frequency domain is developed to calculate such vibration. For the walking comfort of
pedestrians, the rms acceleration of footbridge should accord with the vibration comfort requirements in the serviceability state
[24–29] and these requirements are illustrated in Fig. 1. Most of comfort requirement curves are frequency-dependent. Thus,
according to the objective of minimizing the footbridge rms acceleration, an optimal design procedure of MTMD system is
developed to suppress excessive footbridge vibration under passing crowd with uniform or random stride rates. The footbridge
natural frequency fluctuation induced by crowd–footbridge interactions under congested crowd passing is studied, and the
MTMD off-tuning effect resulting from the estimation error or time variation of footbridge natural frequencies is investigated.
Illustrated examples have been provided to verify the validity of the developed methodology.

2. A loading model for walking pedestrian

2.1. Single foot force model

Accurate evaluation of vertical force induced by one walking pedestrian is crucial to estimate the vibration of
footbridge. The continuous walking force, associated with the vertical oscillation of the body center of mass, is often
modeled as a sum of a static and a dynamic component as [30]

FcðtÞ ¼ Gþ
Xn

i ¼ 1

Gai cosð2pifstÞþ
Xn

i ¼ 1

Gbi sinð2pifstÞ ¼ Gþ
Xn

i ¼ 1

Gci sinð2pifstþjiÞ, i¼ 1,2, . . . ,n (1)

where fs is the stride rate, G is the body weight, and ci and ji are the dynamic load factor (DLF) and the phase angle of the
ith harmonic, respectively.

With the advancement of experimental technology, many scholars have carried on a series of measurements to identify
the various parameters (fs, ci and ji) to evaluate Fc(t) based on Eq. (1). Many scholars carried out a series of walking force
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measurements to obtain the DLFs within the normal stride rate range [4,6,30,31]. Among them, Young’s empirical equation
[6], based on a regression of available tested vertical forces (including Kerr’ results [5]), evaluates the first four orders of
DLFs with 75 percent assurance rate, as showed in Eq. (2). In terms of stride rate, Matsumoto [32], based on 505 samples of
the vertical force curves, summarized that stride rates basically accorded with the normal distribution with mean 2.0 Hz,
and standard deviation 0.173 Hz, and that 1.6–2.4 Hz basically covered the common range of stride rates. However, since
the phase angle does not have a clear physical meaning, its definite statistical law has not well been detected:

c1 ¼ 0:41ðfs�0:95Þr0:56, fs ¼ 122:8 Hz

c2 ¼ 0:069þ0:0056� 2fs, 2fs ¼ 225:6 Hz

c3 ¼ 0:033þ0:0064� 3fs, 3fs ¼ 328:4 Hz

c4 ¼ 0:013þ0:0065� 4fs, 4fs ¼ 4211:2 Hz (2)

Without the applicable rule of phase angle, it is difficult for Eq. (1) to take into practice. Therefore, this paper develops a
single foot force model to describe the dynamic loading of pedestrian walking, not only avoiding the inaccessibility of
phase angle and also accounting for subsequent random vibration modeling of footbridge. Generally, the common single
foot load–time force curve, illustrated in Fig. 2, is characterized with two peaks, and the first one is higher than the second
one.

Since foot standing points constantly change their positions on the footbridge when pedestrian walks, the single foot
force is more realistic to evaluate footbridge dynamic response than the continuous walking force. In view of the
universality and preciseness of load model, Young’s empirical equation of DLFs is chosen to construct the single foot force
model.

The single foot force is assumed to be formulated by Fourier series as

FeðtÞ ¼ G
Xþ1
n ¼ 1

An sin
pn

Te
t

� �
, 0rtrTe (3)

where An and Te is the Fourier coefficient and constant cycle. Due to the limited number of constraint equations
relating the single force model with the continuous walking force, only the first five order Fourier coefficients are
considered in the single foot force model, for the DLFs of only the first four harmonics are available according to previous
studies and walking force measures. According to the statistical result of Ebrahimpour [7], the ratio of the cycle of single
foot force to the period during which both feet have contact with ground is basically unchanged, and this ratio is
approximately 4.165 on average. Thus, illustrated by Fig. 3, the cycle of the continuous walking force which is the inverse
of stride rate is written as

Te

Dt
¼ 4:165-Dt¼ 0:24Te

Ts ¼ Te�Dt¼ 0:76Te (4)
Time [s]
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Fig. 2. Single foot load–time force curve.
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Fig. 3. Construction of the continuous walking force by superposing the single foot force in the time domain.
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The continuous walking force in its constant cycle could be determined by the single foot force as

FcðtÞ ¼ G
X5

n ¼ 1

An sin
pn

Te
t

� �
þsin

pn

Te
ðtþTsÞ

� �� �
, t 2 ½0,0:24Te�

FcðtÞ ¼ G
X5

n ¼ 1

An sin
pn

Te
t

� �
, t 2 ½0:24Te,0:76Te�

8>>>>><
>>>>>:

(5)

In addition, the continuous walking force with the cycle of 0.76Te could be expressed as

FcðtÞ ¼ Gþ
Xn

i ¼ 1

Gai cos
2pi

0:76Te
t

� �
þ
Xn

i ¼ 1

Gbi sin
2pi

0:76Te
t

� �
¼ Gþ

Xn

i ¼ 1

Gci sin
2pi

0:76Te
tþji

� �
, i¼ 1,2, . . . ,n (6)

Combining Eqs. (5) and (6), the Fourier coefficients in the single foot model could be calculated by

X5

n ¼ 1

Z 0:76Te

0
sin

pn

Te
t

� �
dt

" #
Anþ

X5

n ¼ 1

Z 0:24Te

0
sin

pn

Te
ðtþ0:76TeÞ

� �
dt

" #
An ¼ 0:76Te

X5

n ¼ 1

Z 0:76Te

0
cos

2pi

0:76Te
t

� �
sin

pn

Te
t

� �
dt

" #
Anþ

X5

n ¼ 1

Z 0:24Te

0
cos

2pi

0:76Te
t

� �
sin

pn

Te
ðtþ0:76TeÞ

� �
dt

" #
An ¼ 0:38Teai

X5

n ¼ 1

Z 0:76Te

0
sin

2pi

0:76Te
t

� �
sin

pn

Te
t

� �
dt

" #
Anþ

X5

n ¼ 1

Z 0:24Te

0
sin

2pi

0:76Te
t

� �
sin

pn

Te
ðtþ0:76TeÞ

� �
dt

" #
An ¼ 0:38Tebi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

i þb2
i

q
¼ ci, i¼ 1,2,3,4

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

(7)

According to three constraint conditions: (1) Fe(t) is always the significant positive value in its cycle; (2) An is the real
number; (3) the single foot force calculated by Eq. (3) is similar to the experimental force curve with two peaks and the
first one higher than the second one, the solution of this equation set is demonstrated as Fig. 4. And then by the least-
square method, the convenient expression of Fourier coefficients is written as

A1 ¼
�0:0698fsþ1:211, 1:6 Hzr fsr2:32 Hz

�0:1784fsþ1:463, 2:32 Hzo fsr2:4 Hz

(

A2 ¼
0:1052fs�0:1284, 1:6 Hzr fsr2:32 Hz

�0:4716fsþ1:210, 2:32 Hzo fsr2:4 Hz

(

A3 ¼
0:3002fs�0:1534, 1:6 Hzr fsr2:32 Hz

�0:0118fsþ0:5703, 2:32 Hzo fsr2:4 Hz

(
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A4 ¼
0:0416fs�0:0288, 1:6 Hzr fsr2:32 Hz

�0:2600fsþ0:6711, 2:32 Hzo fsr2:4 Hz

(

A5 ¼
�0:0275fsþ0:0608, 1:6 Hzr fsr2:32 Hz

0:0906fs�0:2132, 2:32 Hzo fsr2:4 Hz

(
(8)

2.2. Verification of the single foot force model

The single foot forces, together with the continuous walking forces constructed by the single foot force model are
compared with various measured forces [5,7,12,30], as shown in Fig. 5. From the comparison, it is apparently shown that
the various force histories constructed by the single foot force model accord with the measured ones for the most part.
Additionally, the slight discrepancy between them lies in: (1) the DLFs of four harmonics recommended by Young
are resulted from statistical regression; (2) the cycle of the continuous walking force deduced from Ebrahimpour’s study is
also statistically significant; (3) the discreteness of measured forces due to different measuring techniques plays a
non-ignorable influence.
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3. Crowd-induced vibration of footbridge in the time domain

The flexural motion of footbridge at section x is [33]

q2

qx2
EI

q2uðx,tÞ

qx2

 !
þm

q2uðx,tÞ

qt2
þc

quðx,tÞ

qt
¼ Fðx,tÞ (9)

where EI, m, c, and u(x,t) are the stiffness, linear density, viscous damping coefficient and vertical displacement of
footbridge, respectively; F(x,t) is the external loading. Assuming the stride length is constant, Fig. 6 demonstrates the
crowd-induced excitation of a footbridge spatially and temporally. Corresponding to the fact that the ith pedestrian begins
to walk onto the footbridge from x=xi (0rxirDl) at the time t=ti from the left, and that from the right the ith pedestrian
begins to walk onto footbridge from x¼ xi0 (0rxirDl) at the time t¼ ti0 , the crowd loading function is written as

Fðx,tÞ ¼
XN

i ¼ 1

XK

k ¼ 1

d½x�ðk�1ÞDl�xi�Fei½t�ðk�1Þtsi�ti�Hðt,tiÞþ
XN0

i0 ¼ 1

XK

j ¼ 1

d½x�ðL�ðk�1ÞDl�xi0 Þ�Fei0 ½t�ðk�1Þtsi0�ti0�DT�Hðt,ti0 Þ

(10)

where H(t,ti)=U(t�ti)�U(t�(ti+L/vi)); Fei(t) and Fei0 ðtÞ are the single foot forces of the ith pedestrian from the left and the
ith one from the right; and U(t) and d(x), respectively, represent the unit step function and the Dirac delta function, which
are individually defined as

Z 1
�1

dðxÞdx¼
1, x¼ 0

0, xa0

(
(11)

UðtÞ ¼
1, tZ0

0, to0

(
(12)

In Eq. (10), Dl, L and K, represent the stride length, the span of footbridge and the total number of foot standing points on
the footbridge, respectively. N and N0 are the total number of pedestrians from the left and the right. tsi and tsi0 are the ith
pedestrian’s cycle of the single foot force from the left and the ith pedestrian’s cycle from the right. DT is the lag time of the
crowd flow from the right after that from the left. According to Eq. (9), given that the viscous damping of footbridge adopts
Rayleigh damping, the decoupled single-degree-of-freedom equation corresponding to the nth mode of footbridge
vibration is written as

€qnðtÞþ2xnon _qnðtÞþo2
nqnðtÞ ¼

1

Mn

8<
:
XN

i ¼ 1

XK

k ¼ 1

fn½ðk�1ÞDlþxi�Fei½t�ðk�1Þtsi�ti�Hðt,tiÞ

þ
XN0
i0 ¼ 1

XK

k ¼ 1

fn½ðL�ðk�1ÞDl�xiÞ�Fei0 ½t�ðk�1Þtsi0�ti0�DT�Hðt,ti0 Þ

9=
; (13)

where on, Mn and xn are the nth modal circular frequency, modal mass, and modal damping ratio of footbridge. The time
domain approach demonstrated above is costly even though a powerful computer is used to calculate the long-time
vibration of footbridge. Additionally, as an indicator of the walking comfort of pedestrian, the rms acceleration is not
clearly reflected in this time domain method. Therefore, in this paper, the time domain method only serves to examine the
preciseness and efficacy of the more convenient random vibration model put forward in the next section.
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4. Crowd-induced random vibration model

The randomness of the footbridge vibration, generated by crowd random walking, lies in the random stride rates and
the random time intervals of neighboring pedestrians passing through the footbridge. From the study of time headway in
the traffic flow, the gamma distribution [34] is adopted to describe the probability density function of the time intervals of
neighboring pedestrians. By constructing the time sequence of walking pedestrians on the footbridge, the randomness of
time interval is introduced to the crowd-induced random vibration model.

The vibration displacement is generally small when the footbridge vibrates vertically. Thus, it is difficult for the vertical
vibration to induce the synchronism between the vibration phase of footbridge and the excitation phase of generalized
force generated by crowd walking just like the mechanism of the lateral resonant vibration of slender footbridge.
Additionally, the synchronism among the pedestrians is likely to occur when pedestrians queue to cross the footbridge in a
congested state. In this particular synchronism, the walking speed of pedestrians will gradually tend to be identical,
assuming that the stride lengths are generally the same, and thus the stride rates of pedestrians would be in complete
agreement. As for the footbridge characterized with low vertical vibration frequency, the human walking comfort will be
challenged seriously when the frequency of footbridge falls within the range of the frequency bandwidth of crowd-induced
excitation. Therefore, in this model, stride rates of all the pedestrians are supposed to be the same and tuned to the natural
frequencies of footbridge so as to excite the resonant or maximum vibration regarded as the control object of subsequent
MTMD optimization.

Based on the assumptions above, the load excitation generated by crowd random walking equates with identical load
time history in each standing point with the same time lag between two neighboring standpoints. Namely, the vibration of
footbridge is equivalent to the vibration generated by completely coherent loading time history with identical time lag
(travelling effect) in each standing point, as illustrated in Figs. 6 and 9. With a given value as their mean, a series of time
intervals between neighboring walking pedestrians could be randomly generated by the traffic flow theory, and thus the
loading time history generated by N pedestrians from the left end of footbridge in the first foot standpoint can be
constructed by the single foot force model as

FSðtÞ ¼ Fe1ðtÞþ
XN

i ¼ 2

Fei

�
t�
Xi�1

j ¼ 1

tj

�
, tZ0 (14)

where Fei(t) is the single foot force of the ith pedestrian. The loading time history in each foot standpoint can be
transformed to loading power spectral density by FFT technique. Given that the stride rates of all pedestrians are the same,
the loading power spectral density is merely dependent on the average time interval of walking pedestrians. Fig. 7 shows
the load time history in the first standpoint when the average time interval is 2 s and the uniform stride rate is 2 Hz. Fig. 8
shows the loading power spectral densities corresponding to the different uniform stride rates 1.6, 2.0 and 2.4 Hz when the
average time interval is 0.5 s. From Fig. 8, the loading power spectral density is focusedly distributed in the spectrum of
threefold stride rates (1.6–7.2 Hz) while in other spectrum it is negligible. Thus, only the specific spectrum (1.6–7.2 Hz) of
loading power spectral density is used to calculate the vibration response. Since the power spectral density is merely
Fig. 7. Load time history in the first foot standpoint.
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dependent on uniform stride rate and average time interval, the footbridge vibration could be conveniently evaluated by
studying these two parameters.

Illustrated in Fig. 6, the vertical motion of footbridge under random walking of crowd is

q2

qx2
EI

q2uðx,tÞ

qx2

 !
þm

q2uðx,tÞ

qt2
þc

quðx,tÞ

qt
¼
XK

k ¼ 1

dðx�kDlÞFS t�
ðk�1ÞDl

u

� �

þ
XK

k ¼ 1

dðx�ðL�kDlÞÞFS t�
ðk�1ÞDl

u0
�DT

� �
, u¼ fsDl, u0 ¼ f 0sDl (15)

where fs and f 0s are the uniform stride rates of pedestrians from the left and the right, respectively; u and u0 are the
corresponding walking speeds. By the pseudo-excitation method [35], the pseudo-exciting force of Fs(t) is written as

~F SðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
SFs
ðoÞ

p
eiot (16)

where SFn
ðoÞ is the power spectral density of Fs(t), illustrated in Fig. 8. By substituting Eq. (16) into Eq. (15), the vertical

motion equation of footbridge expressed by pseudo-exciting force is written as

q2

qx2
EI

q2 ~uðx,tÞ

qx2

 !
þm

q2 ~uðx,tÞ

qt2
þc

q ~uðx,tÞ

qt
¼
XK

k ¼ 1

dðx�kDlÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
SFs
ðoÞ

p
eioðt�ðk�1Þ=fsÞ þ

XK

k ¼ 1

dðx�ðL�kDlÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
S0Fs
ðoÞ

q
eioðt�ðk�1Þ=f 0s�DTÞ

(17)

where ~uðx,tÞ is the pseudo-displacement of footbridge. The pseudo-excitation of crowd walking is illustrated in Fig. 9, in
which ~F

0
ðtÞ is the pseudo-exciting force induced by the right crowd walking. By decoupling Eq. (17), the nth modal

equation of vertical motion is expressed as

€~q nðtÞþ2xnon
_~q nðtÞþo2

n
~qnðtÞ ¼

1

Mn

XK

k ¼ 1

ðfnðkDLÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
SFs
ðoÞ

p
eioðt�ðk�1Þ=fsÞ þfnðL�kDLÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
S0Fs
ðoÞ

q
eioðt�ðk�1Þ=f 0s�DTÞÞ (18)

where ~qnðtÞ is the pseudo nth modal coordinate of footbridge. From Eq. (18), ~qnðtÞ can be shown as

~qnðtÞ ¼

1
Mn

PK
k ¼ 1ðfnðkDLÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
SFs
ðoÞ

p
eioð�ðk�1Þ=fsÞ þfnðL�kDLÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S0Fs
ðoÞ

p
eioð�ððk�1Þ=fsÞ�DTÞ

	
o2

n�o2þ2ixnono
eiot (19)
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After the superposition of all the modal responses, the pseudo-acceleration is written as

€~u ðx,tÞ ¼
X1

n

fnðxÞ
€~q nðtÞ (20)

Substituting Eqs. (19) into (20) results in the following pseudo-acceleration:

€~u ¼�eioto2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
SFs
ðoÞ

p X1
n

fnðxÞ
PK

k ¼ 1 fnðkDLÞfank�ibnkg

Mn½ðo2
n�o2Þ

2
þ4x2

no2o2
n�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
S0Fs
ðoÞ

q X1
n

fnðxÞ
PK

k ¼ 1 fnðL�kDLÞfa0nk�ib0nkg

Mn½ðo2
n�o2Þ

2
þ4x2

no2o2
n�

( )
(21)

where the intermediate variables are expressed as

ank ¼ ðo2
n�o

2Þcos o k�1
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� �� �
�2zono sin o k�1
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� �� �
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n�o

2Þsin o k�1

fs

� �� �
þ2zono cos o k�1

fs

� �� �

a0nk ¼ ðo
2
n�o

2Þcos o k�1

f 0s
þDT

� �� �
�2znono sin o k�1

f 0s
þDT

� �� �

b0nk ¼ ðo
2
n�o

2Þsin o k�1

f 0s
þDT

� �� �
þ2znono cos o k�1

f 0s
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� �� �
(22)

The acceleration power spectral density of footbridge at section x can be expressed as

S €u ðx,wÞ ¼ €~u
� €~u (23)

where ‘*’ symbolizes the conjugate complex operator. By substituting Eq. (21) into Eq. (23), the acceleration power spectral
density becomes
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(24)

Assuming that the acceleration time history at arbitrary position of footbridge is a stationary random process with the
mean zero, the variance of acceleration is expressed as

s2
€uðx,tÞ ¼ E½ €u2

ðx,tÞ� ¼
1

2p

Z þ1
�1

S €~u ðx,oÞdo (25)

And the rms acceleration is shown as

arms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

Z T

0
aðtÞ2 dt

s
(26)

Combining Eqs. (25) and (26) results in the rms acceleration:

armsðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2p

Z þ1
�1

S €~u ðx,oÞdo

s
(27)

Thus, the rms acceleration at arbitrary position of footbridge can be evaluated by the acceleration power spectral density
expressed as Eq. (24).

This random vibration model can conveniently seize the resonant or maximum response of crowd–footbridge system,
and what is more important, it can highly efficiently calculate the rms acceleration of footbridge under the worst crowd
excitation. Based on this model, the MTMD design procedure considering the maximum rms acceleration of footbridge as
the optimization objective is proposed.
5. Comparison between the time domain method and random vibration model

In order to verify the random vibration model mentioned above, the vibration analysis of one-span, two-equal-span and
three-equal-span footbridges under crowd random walking are carried out and the maximum rms accelerations are
compared between the time domain method and random vibration model. These three footbridges selected have the same
main span, equal to 40 m, 2 Hz fundamental natural frequency, 0.01 damping ratio, 2400 kg/m line density, 9.96�109

Pa m4 flexural stiffness and all boundary conditions are simply supported. An individual human weight is assumed to be
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700 N (0.7 kN), and the average time interval between neighboring pedestrians is adopted to 2 s, considering all the
pedestrians move onto footbridge from the left end.

When the uniform stride rate of crowd coincides with the fundamental natural frequency of footbridge, the crowd–
footbridge resonance will occur. Figs. 10–12 show the acceleration time history envelops of these three footbridges in the
midspan of mainspan calculated by time domain method. The solution superposes the first three order modal responses,
and the results show the response contribution of the first mode accounted for 97 percent of the superposed response,
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which can be explained by the distantly spaced natural frequencies of footbridges and the closeness between the first
modal frequency and stride rate of pedestrians. Correspondingly, Figs. 13–15 show the comparison between acceleration
power spectral density transformed from the acceleration time histories presented in Figs. 10–12, and that calculated from
Eq. (24). The acceleration power spectral density is focusedly distributed in the frequency range centering around
footbridge fundamental frequency, implying that the first modal resonance of footbridge occurs. Due to some
simplifications in the crowd-induced random vibration model, the acceleration power spectral density from the time
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domain method is slightly greater than that from random vibration model, however, both the rms accelerations calculated
by Eq. (27) are approximately equivalent. Therefore, the random vibration model is reasonable and applicable to evaluate
the maximum rms acceleration of footbridge. In the other hand, comparing with the time domain method, the random
vibration model is more advantageous in the computational efficiency and convenience.

6. Equations of motion for footbridge–MTMD system under crowd’s random walking

The MTMD system with p parallelly placed tuned mass dampers is installed on the straight girder footbridge with
length L at section x=xt, as shown in Fig. 16. When a pedestrian flow is passing over the footbridge with the average time
interval T from the left, the governing equations for the footbridge–MTMD system are given as follows:
1.
 The vertical motion equation at section x is similar to Eq. (9), with slight change of loading function due to the
participation of MTMD. The changed loading function is

Fðx,tÞ ¼
XN

i ¼ 1

XK

k ¼ 1

d½x�ðk�1ÞDl�xi�Fei t�ðk�1Þ
1

fsi
�ti

� �
Hðt,tiÞþ

Xp

l ¼ 1

dðx�xtÞfktl½ztl�uðxt ,tÞ�þctl½_ztl� _uðxt ,tÞ�g (28)

The vertical motion of the lth TMD is
2.
mtl €ztlðtÞþctl½_ztlðtÞ� _uðxt ,tÞ�þktl½ztlðtÞ�uðxt ,tÞ� ¼ 0, l¼ 1,2, . . . ,p (29)

In Eqs. (28) and (29), u(x, t) and ztl(t) represent the vertical displacements of footbridge and the lth TMD. mtl, ctl, and ktl

represent the mass, damping coefficient, and stiffness of the lth TMD, respectively. In Eq. (28), the pedestrian is regarded as
a moving force. If a moving mass model is used, the pedestrian load is written as

F 0ei ¼ Fei�
G

g
€uðxiðtÞ,tÞ (30)

where xi(t) is the position of the ith pedestrian on the footbridge. Due to the time variation of pedestrian’s position on the
footbridge, the load of pedestrian assumed as a moving mass is dependent on the displacement, velocity and acceleration
of footbridge. This moving mass model reflects the interaction between footbridge and crowd, and can further estimate the
time variance of footbridge modal frequency under crowd passing. Assuming the footbridge response consists of the modal
responses of the first Q orders, the nth decoupled modal equation of vertical motion is expressed as

€qnðtÞþ2xnon _qnðtÞþo2
nqnðtÞ ¼ FnðtÞþFn,MTMDðtÞ (31)
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where the nth modal load function is

FnðtÞ ¼
1

Mn

XN

i ¼ 1

XK

k

fn½ðk�1ÞDlþxi�Fei½t�ðk�1Þtsi�ti�Hðt,tiÞ

Fn,MTMDðtÞ ¼
Xp

l ¼ 1

mtl,nðo2
tlvtlþ2xtlotl _vtlÞ (32)

In Eq. (32), vtl=ztl�u(xt,t), mtl,n=fn(xt)mtl/Mn; otl, xtl, vtl and Mn represent the circular frequency, damping ratio, the stroke
of the lth TMD and the nth modal mass of footbridge, respectively. Moreover, the coordinate in Eq. (29) can be rearranged
into the stroke of the lth TMD as

€vtlþ
XQ

n ¼ 1

fnðxtÞ €qnðtÞþ2xtlotl _vtlþo2
tlvtl ¼ 0 (33)

Combining Eqs. (31) and (33), the coupled equations of motion in modal space are given in matrix form as

IQ�Q 0

Mty IP�P

" #
€qðtÞ

€vðtÞ

( )
þ

Cyy Cyt

0 Ctt

" #
_qðtÞ

_vðtÞ
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þ

Kyy Kyt

0 Ktt

" #
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( )
¼

FðtÞ

0

� �
(34)

where

MT
ty ¼

f1ðxtÞ f1ðxtÞ � � � f1ðxtÞ
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3
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0 0 � � � 2xQoQ

2
666664

3
777775

Cyt ¼

�2xt1ot1mt1,1 �2xt2ot2mt2,1 � � � �2xtpotpmtp,1

�2xt1ot1mt1,2 �2xt2ot2mt2,2 � � � �2xtpotpmtp,2

^ & ^

�2xt1ot1mt1,Q �2xt2ot2mt2,Q � � � �2xtpotpmtp,Q

2
666664

3
777775

Ctt ¼

2xt1ot1 0 � � � 0

0 2xt2ot2 � � � 0

^ & ^

0 0 � � � 2xtpotp

2
666664

3
777775, Kyy ¼

o2
1 0 � � � 0

0 o2
2 � � � 0

^ & ^

0 0 � � � o2
Q

2
666664

3
777775

Kyt ¼

�o2
t1mt1,1 �o2

t2mt2,1 � � � �o2
tpmtp,1

�o2
t1mt1,2 �o2

t2mt2,2 � � � �o2
tpmtp,2

^ & ^

�o2
t1mt1,Q �o2

t2mt2,Q � � � �o2
tpmtp,Q

2
666664

3
777775

Ktt ¼

o2
t1 0 � � � 0

0 o2
t2 � � � 0

^ & ^

0 0 � � � o2
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^
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2
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and I and 0 represent a unit matrix and a zero matrix. It should be brought to the notice that the global matrices in the
equation above are asymmetric. It is a rare situation; the reason for that could possibly be the coupling between the
vectors of q(t) and v(t). Eq. (34) is a general governing equation in modal space of the footbridge–MTMD system subjected
to crowd walking excitation, and it is aimed to obtain the transfer function of footbridge and MTMD coupled response,
which is essential to calculate the acceleration power spectral density and later the root-mean-square acceleration.

7. Dynamic characteristics of footbridge under crowd passing

When pedestrians are passing over the footbridge, the footbridge with the low natural frequency falling within the
frequency bandwidth of crowd excitation will have a resonant effect and the footbridge natural frequency will change with
time during crowd walking.
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7.1. Resonant frequency bandwidth of crowd walking excitation

In order to study the frequency bandwidth of crowd walking excitation, the spectral analysis of crowd load function is
carried out and the main frequency bandwidth of crowd excitation is studied in this section. For instance, for the crowd
flow with 2 s as its average time interval passing the one-span footbridge illustrated in Section 5 at the normally
distributed stride rates with mean 2.0 Hz and standard deviation 0.173 Hz, the magnitude of the spectrum of the
normalized first modal force, |F1(o)|/M1, is shown in Fig. 17. It is obviously seen that there exists peaks when the excitation
frequency, f, is distributed in the frequency bandwidth of 1.5–2.5, 3.4–4.3, and 5.0–6.6 Hz, and the magnitudes of the
spectrums of other modal forces have the similar characteristic. Accordingly, when the nth flexural modal frequency of
footbridge is close to this frequency bandwidth, the crowd–footbridge resonance will occur. Therefore, it is necessary for
the designer to verify whether the crowd–footbridge resonant response in the serviceability limit state meets the comfort
requirement of pedestrian normal walking, and moreover whether the vibration control design is required, when the
modal frequencies of footbridge fall within the resonant frequency bandwidth. Additionally, it is apparent to notice that
the resonant effect could be avoided when the modal frequency of footbridge falls within the range of 2.5–3.4 Hz, though
the natural frequency has a low magnitude. In other words, the vibration response of footbridge with its modal frequency
in 2.5–3.4 Hz, is likely to be less intense than that of footbridge with its modal frequency in 3.4–4.3 or 5.0–6.6 Hz.
7.2. Time variation of footbridge modal frequency due to crowd random walking

The interaction between footbridge and crowd can be better described when adopting the more precise pedestrian
model. For instance, applying a moving mass model for the pedestrian illustrated by Eq. (30), the equation of motion of the
footbridge vertical displacement, Eq. (31), becomes

M €qðtÞþC _qðtÞþKqðtÞ ¼
XN

i ¼ 1

XK

k

UT
½ðk�1ÞDlþxi�Hðt,tiÞ Fei½t�ðk�1Þtsi�ti��

G

g
U½ðk�1ÞDlþxi� €qðtÞ

� �
(35)

or

½MþM0ðtÞ� €qðtÞþC _qðtÞþKqðtÞ ¼
XN

i ¼ 1

XK

k

UT
½ðk�1ÞDlþxi�Hðt,tiÞFei½t�ðk�1Þtsi�ti� (36)

where M0ðtÞ ¼
PN

i ¼ 1

PK
k U½ðk�1ÞDlþxi�U

T
½ðk�1ÞDlþxi�ðG=gÞHðt,tiÞ, UT(x)={f1(x), f2(x),y}. M, C and K represent the

modal mass matrix, modal damping matrix and modal stiffness matrix, respectively. When substituting Eq. (30) to Eq. (31),
the terms corresponding to the displacement and velocity are ignored due to its trivial contribution compared to that of the
acceleration term. It is evident that the mass matrix of the footbridge will be altered because of the participation of
pedestrians. Furthermore, the mass matrix varies with time, which means that the modal frequency of footbridge will
change with time during crowd passing. Fig. 18 shows the time variation of the first modal frequency of the one-span
footbridge as presented in Section 5, subjected to a crowd flow with average time interval 0.5 s. Since the overall mass of
footbridge increases as pedestrians pass over the footbridge, the system’s natural frequencies are smaller than their
original values. Though this interaction results in a change of the footbridge modal frequency, its variation is less than 1
percent of its original value. This indicates that the crowd walking even in a congested state does not lead to a significant
change in the footbridge modal frequency to which the MTMD introduced in the next section is tuned.
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8. Optimization of multiple tuned mass dampers

Much research has been carried out to estimate the effectiveness of TMD in avoiding the excessive vibration of
footbridge excited by pedestrian walking [20,23]. It is concluded that the optimal TMD is a useful control device in
reducing excessive vibration when its frequency is well tuned to the resonant frequency of the footbridge. However,
though the TMD vibration-reduced effectiveness is less useful outside the controlled frequency bandwidth, the footbridge
vibration is in a low level. Additionally, it is also demonstrated that TMD’s effectiveness was much sensitive to
the frequency error to which TMD is tuned. The TMD’s effectiveness degrades significantly if it does not right tune to the
dominant frequency of footbridge. Thus, precise estimation of footbridge modal frequency is crucial to design the TMD
control system. To overcome the deficiency of single TMD, the MTMD system consisting of multiple TMDs is developed to
improve its reliability and robustness. Properly optimizing the MTMD parameters such as mass ratio, frequency ratio, and
damping ratio, makes the MTMD system cover a wider frequency range than the single TMD system and thus be more
robust to cover the controlled resonant frequency of footbridge, especially when the off-tuning effect exists and the
footbridge is subjected to moderately wide-band crowd excitation.

When the modal frequencies of footbridge fall in the frequency bandwidth of crowd excitation, generally, these
vibration modes should be controlled by MTMD system, respectively. In the vibration analysis, the MTMD system is put at
the point with maximum structural response of the controlled mode shape [36], and the MTMD parameters are
determined based on the minimization of maximum rms acceleration of footbridge when the total mass ratio of MTMD
system and number of TMDs are determined. Since the crowd properties, such as the average time interval and distribution
of stride rates are undefined, the optimized strategy is carried out assuming 0.5 s average time interval, which represents a
congested walking state of footbridge [12]. According to the characteristic of crowd walking, the stride rates are normally
distributed with mean 2.0 Hz, and standard deviation 0.173 Hz [11] when the footbridge has low crowd density. With the
gradual increase of crowd density, the crowd stride rates produce a certain degree of synchronization among pedestrians
[37], and moreover the crowd walking speeds tend to be the same when the crowd density increases to a high level. Due to
the complexity of crowd stride rates and their synchronization, the MTMD optimized procedure takes account of two
ultimate crowd stride rates distributions: (1) the crowd stride rates accord with normal distribution; (2) the uniform
crowd stride rate obtains its value in [1.6, 2.4 Hz] so as to excite the worst resonant response of footbridge. These two
scenarios can evaluate the most intense vibration of footbridge subjected to crowd excitation, and thus the optimized
MTMD system only need to ensure the footbridge vibration below the vibration comfort requirement in these two
scenarios.

8.1. Optimal multiple tuned mass damper parameters for footbridge under crowd walking with normally distributed stride rates

When considering the nth vertical mode of footbridge as a controlled mode of the MTMD system, taking the Fourier
transform of Eqs. (34) yields the nth modal response of footbridge, qn(o), which is expressed as

qnðoÞ ¼HMTMD
n ðoÞFnðoÞ (37)

The function HMTMD
n ðoÞ represents the transfer function of the nth modal displacement of footbridge corresponding to the

nth modal crowd load Fn(o). HMTMD
n ðoÞ is expressed as

HMTMD
n ðoÞ ¼ 1

ð�o2þ2ixnonoþo2
nÞ�

Pp
l ¼ 1

o2fnðxt Þmtl,nðo2
tl
þ2ixtlotloÞ

�o2þ2ixtlotloþo2
tl

(38)
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The power spectral density of the nth flexural modal displacement and acceleration is written as

Sqn ðoÞ ¼HMTMD
n ðoÞSFn

ðoÞðHMTMD
n ðoÞÞ� (39)

S €qn
ðoÞ ¼w4Sqn ðoÞ (40)

where SFn
ðoÞ is the power spectral function of nth modal force. And the maximum rms acceleration which corresponds to

the rms acceleration in the midspan of footbridge is approximately expressed as

arms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2p

Z 1
�1

S €qn
ðoÞdo

s
(41)

arms, as the general indicator of the walking comfort of pedestrian, is a function of fn(xt), xn (footbridge parameters) and xtl,
btl, mtl,n (MTMD parameters), where btl=otl/on and mtl,n=mtl/Mn is the modal frequency ratio and the modal mass ratio
(l=1,2,y,p). fn(xt) can be determined by finding out the position of maximum response of the controlled mode shape. For
simplifying the optimized procedure of MTMD parameters and convenient installation, the modal mass ratio of each TMD
is assumed to be equal. Meanwhile, the total mass ratio, which equates with the sum of all modal mass ratios of TMDs, is
generally chosen by taking both economy and the footbridge bearing capacity into consideration. For given values of fn(xt)
and xn, the optimal MTMD parameters for the crowd stride rates normally distributed can be obtained by the following
equations:

min armsðxtl,btlÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2p
R1
�1

S €qn
ðoÞdo

r
s:t: 14xtl40, 24btl40 ðl¼ 1,2, . . . ,pÞ

fsi 2 Nð2 Hz,0:173 HzÞ ði¼ 1,2, . . . ,NÞ

8>>><
>>>:

(42)

8.2. Optimal multiple tuned mass damper parameters for footbridge under crowd passing with uniform stride rate

For the uniform crowd stride rate, the crowd flow only from the left is illustrated in Fig. 19. From the figure, the nth
modal force is expressed as

FnðtÞ ¼
1

Mn

XK

k ¼ 1

fnðkDlÞFS t�
ðk�1ÞDl

v

� �
, v¼ fsDl (43)

According to the pseudo-excitation method [35], the pseudo nth modal force is expressed as

~F nðtÞ ¼
1

Mn

XK

k ¼ 1

fnðkDlÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
SFs
ðoÞ

p
eioðt�ðk�1ÞDl=vÞ (44)
L

t 1
t 2

t t t t

F F F F

Fig. 19. Footbridge excited by foot standpoint loading generated by crowd walking.

Table 1
Definitions for GA optimization procedure.

Nvar Number of design variables

Nsp Size of population

Mcr Crossing rate

Mmr Mutation rate

Mmg Maximum number of generations
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Thus, the power spectral density of the nth modal force is expressed as

SFn
ðoÞ ¼ ð ~F nðtÞÞ

�
� ð ~F nðtÞÞ ¼

1

M2
n

� XK

k ¼ 1

fnðkDlÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
SFs
ðoÞ

p
e�ioðt�ðk�1ÞDl=vÞ

�
�

� XK

k ¼ 1

fnðkDlÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
SFs
ðoÞ

p
eioðt�ðk�1ÞDl=vÞ

�
(45)

By combining Eqs. (39)–(41) and (45), the rms acceleration can be calculated. Accordingly, the optimal MTMD parameters
for the uniform crowd rate can be determined by the following equations:

min armsðxtl,btlÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2p
R1
�1

S €qn
ðoÞdo

r
s:t: 14xtl40, 24btl40 ðl¼ 1,2, . . . ,pÞ

fs1 ¼ fs2 ¼ � � � ¼ fsN ¼ f , f 2 ½1:6,2:4�Hz

8>>>><
>>>>:

(46)

By comparing the optimization objectives in these two scenarios, the optimized MTMD parameters can be determined. In
view of the inaccessibility of the derived function of optimization objective, the genetic algorithm is used to solve the
above optimization problem presented by Eqs. (42) and (46). The essential parameter definitions for the employed GA
optimization procedure in this study have been summarized in Table 1.
9. Numerical verification

The reduction of footbridge rms acceleration due to installation of the proposed optimal MTMD will be clearly
illustrated in this section. Moreover, the off-tuning effect, resulting from footbridge frequency estimation error, on the
MTMD control effectiveness will be extensively investigated.
Table 2
Parameters of GA optimization.

Optimal procedure Nvar Mmr Nsp Mmg Mcr

1 TMD 2 0.05 20 50 0.95

3 TMDs 6 0.05 50 150 0.95

5 TMDs 10 0.05 100 300 0.95

Table 3
Optimal multiple tuned mass damper parameters for 2% total mass ratio and various numbers of tuned mass dampers (TMDs).

Number of TMDs, p 1 3 5

Optimal damping ratio, xt1, xt2,y,xtp 0.0783 0.0478,0.1041,0.0517 0.036,0.0376,0.047,0.0478,0.0329

Optimal frequency ratio, bt1, bt2,y,btp 1.0027 0.9519,1.0372,1.0427 0.9331,0.966,1.0333,1.1335,1.0348

The maximum rms acceleration, arms (m/s2) 0.2217 0.1874 0.1812
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9.1. Multiple tuned mass damper control effectiveness for footbridge under crowd walking

It is obviously that when the modal frequency of footbridge falls within the resonant frequency bandwidth of crowd
excitation, the corresponding resonant mode will be excited by crowd walking. Therefore, the MTMD is designed to control
this resonant modal response which dominates the response of crowd–footbridge system, and is installed at the middle of
the footbridge where the mode-shape value is maximum. The footbridge studied here is the one-span footbridge presented
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in Section 5. MTMD system tunes to the first mode of footbridge and the total mass ratio of MTMD system is selected to be
2 percent. The detailed optimization procedures are illustrated in Fig. 21, and the corresponding parameters of GA
optimization are listed in Table 2. The optimal parameters of MTMD with various number of TMDs resulting from the
optimization strategy presented above are calculated and listed in Table 3. Corresponding to different stride rate
distributions, the modal force power spectral densities of the controlled mode are illustrated in Fig. 20. It is seen that the
power spectral densities are focusedly distributed in [1.6,2.4 Hz] which accords with the normal range of stride rate.
According to the comparison of the optimized rms accelerations, respectively, resulting from Eqs. (42) and (46), the
optimal design parameters of MTMD system are determined not by Eq. (42) (corresponding to normal distribution of stride
rates) but by Eq. (46) (corresponding to the uniform stride rate). Thus, the most intense response of footbridge attached
with MTMD system is determined by the crowd with the uniform stride rate on which the subsequent study of off-tuning
effect is based. Fig. 22 presents the maximum rms acceleration curves of footbridge equipped with different vibration
suppression systems among which the MTMD system designed by simply practical method [16] with frequency range 0.2,
frequency spacing 0.01, total mass ratio 0.02 and damping ratio 0.01 is included when the crowd uniform stride rate ranges
from 1.6 to 2.4 Hz. Since the simply practical method does not account for the damping of main structure and optimization
procedure, its control effectiveness is slightly inferior to that of proposed MTMD systems in this paper. It is also shown that
the maximum rms acceleration curve peak (0.875 m/s2) for the footbridge without TMD is cut to a platform with wide
frequency bandwidth for the footbridge with MTMD system. Compared with a single TMD, the MTMD with the same total
mass ratio are more effective to reduce the footbridge rms acceleration. Due to the optimal MTMD system with 5 TMDs and
2 percent total mass ratio, the footbridge peak rms acceleration is approximately reduced to 20 percent original magnitude
corresponding to the uncontrolled footbridge. The acceleration time history envelopes at the midspan of footbridge
without and with MTMD are illustrated in Figs. 23 and 24. It is apparently found that the footbridge peak acceleration and
acceleration level are both significantly reduced due to the proposed MTMD system. The most intense acceleration and
stroke time history envelopes for all the TMDs (p=5) are also plotted in Figs. 25 and 26. It is seen that the TMD acceleration
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level is far beyond that of footbridge, and that the maximum stroke (0.028 m) is much smaller than the inner depth of
footbridge girder. Therefore, there is enough space for installation and motion of the MTMD system.
9.2. Off-tuning effect

Though TMD is a high cost performance appliance and easy to install and maintain, however, the TMD control
effectiveness will be degraded with time, resulting from the gradual disappearing of TMD viscous oil [38], changing of
structure dynamic properties [20] and especially the structural natural frequency estimation error [18]. This is called the
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off-tuning effect because TMD does not tune to the right frequency [18]. In order to guarantee the TMD control
effectiveness in case of off-tuning effect, the MTMD system containing multiple tuning frequencies which create a wider
frequency bandwidth is adopted to reduce the off-tuning effect. This section only investigates the MTMD off-tuning effect
due to footbridge natural frequency change which is the most conducive factor to this effect.

To illustrate the reliability and robustness of MTMD system, the footbridge with the same layout presented in
Section 9.1 except that the natural frequency is adopted to perform the numerical investigation. 2.5 Hz, which is the upper
limit of the resonant frequency bandwidth, is chosen as the footbridge fundamental frequency to maximize the off-tuning
effect. The maximum rms accelerations of footbridges without and with different MTMD systems are shown in Fig. 27
when off-tuning effect of varying degrees exists. From Fig. 27(a), it is obviously observed that both maximum rms
accelerations of footbridges with single TMD or MTMD system are flattened significantly when no off-tuning effect exists.
In order to increase the robustness of MTMD control effectiveness, another two MTMD systems (labeled as MTMD* and
MTMD**) with the same center TMD frequency as the optimal MTMD system but respectively with 50 and 100 percent
frequency spacing magnification between TMDs are proposed. The maximum rms acceleration curve corresponding to the
MTMD* system is plotted in Fig. 27 as a thick solid line. For the case of no frequency off-tuning, the MTMD* and MTMD**
systems are less effective to control the rms acceleration than the optimal MTMD system. However, when 5 or 10 percent
frequency off-tuning exists, the control effectiveness of the optimal MTMD decreases significantly, whereas the MTMD*
and MTMD** systems show little influence, as shown in Fig. 27(b) and (c). Fig. 28 presents the maximum rms accelerations
of footbridges with MTMD (p=3 and 5) with varying frequency spacing enlargement when footbridge natural frequency
off-tuning ranges from �10 to 10 percent . It is seen that MTMD* system has the better control effectiveness when natural
frequency off-tuning exceeds 6 percent, although it will lose some control effectiveness in the case of no off-tuning or
slight off-tuning. Therefore, in view of the significant frequency off-tuning, the proper frequency spacing enlargement of
the optimal MTMD system can make the footbridge–MTMD system more reliable and robust.

10. Conclusion

When the footbridge natural frequencies fall within the frequency bandwidth of crowd excitation, illustrated in Fig. 17,
generally the excessive vibration response due to crowd–footbridge resonance will exceed the normal walking comfort
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requirement. To reduce the annoying vibration, the MTMD system is adopted. Based on the crowd–footbridge random
vibration model, the general optimization procedure of optimal MTMD system is developed which takes account of the
worst footbridge vibration state. For a congested crowd flow passing over a footbridge with different stride rate
distributions, the optimal MTMD system has good control effectiveness when the frequency bandwidth of crowd excitation
covers the modal frequency of footbridge. When the resonance does not happen, though the control effectiveness of MTMD
system is not significant, the vibration response of footbridge is generally small enough to accord with the walking comfort
requirement.

The study of the theoretical and numerical simulation presented in previous sections indicates that the following
conclusions may be drawn:
(1)
 Based on Young and Ebrahimpour’s researches on the characteristics of pedestrian-induced dynamic loads, the single
foot force model presented by Fourier series is proposed. By comparing with series of measured walking forces, the
recommended single foot force model has good accuracy and can be clearly adopted to analyze the footbridge
vibration.
(2)
 According to the traffic flow theory, the crowd-induced random vibration model is developed. By comparing with the
time domain method, the random vibration model has high effectiveness and can be conveniently used to evaluate the
worst footbridge vibration response.
(3)
 When footbridge natural modal frequencies fall within the frequency bandwidth of crowd excitation (1.5–2.5, 3.4–4.3,
and 5.0–6.6Hz), the crowd–footbridge resonance will occur even though the footbridge has a high fundamental
frequency (more than 3 Hz).
(4)
 If the footbridge maximum rms acceleration is dominated by the crowd–footbridge resonance, the MTMD has good
vibration control performance. As shown in Section 9.1, the peak rms acceleration of footbridge with MTMD system is
approximately reduced to 20 percent the vibration response of footbridge without vibration control system.
(5)
 The estimation error of footbridge modal natural frequency has a notably disadvantageous effect on the TMD control
effectiveness. The proposed MTMD system with proper frequency spacing enlargement is less influenced by the
frequency off-tuning effect. Thus, it has the better reliability and robustness.
While offering an effective methodology for crowd-induced resonant vibration of footbridge, the proposed random
vibration model needs to be further studied. For example, at present it is only applicable to compute the resonant vibration
induced by crowd with uniform stride rate, and the movement correlation among different pedestrians with different
crowd densities was not considered in the present application. Furthermore, when revealing the lateral resonant vibration
mechanism of slender footbridge with low natural frequency of lateral vibration, this model ignores the correlation of
footbridge vibration phase and crowd excitation phase. In its application, the loading power spectral density at foot
standing point is required and, therefore, a Fourier transform code must be used. Nevertheless, the proposed model offers a
highly efficient alternative to analyze crowd–footbridge vibration and the corresponding optimal MTMD system for
vibration suppression.
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